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1 Introduction

The relationship between cognitive psychologists and researchers in artificial intelligence, al-

though occasionally touchy, carries substantial benefits for both. The designer of expert systems

frequently starts with a naive model of tll :! type of reasoning he is attempting to implement. Care-

ful review of the psychological literature and analysis of verbatim protocols can reveal unexpected

properties of the reasoning he is investigating. In my experience studying the reasoning methods

of expert physicians, careful attention to human behavior can reveal distinctions between radically

different. types of knowledge in what. initially appeared to be a single category. The distinct, types

of knowledge need distinct representations in the design of an implementable system. In addition,

clues to the actual structure of the knowledge representation appear in the form of states of partial

knowledge.

The cognitive psychologist can learn from the AI researcher a vocabulary of knowledge represen-

tat ion and inference techniques that were developed for purely engineering purposes, but can serve

as elements of descriptive psychological theories. The concepts of forward and backward-chaining

inference niles provide examples of this. Implementation of a cognitive theory as a computer pro-

gram also provides the well-recognized advantages of enforcing a certain level of consistency and

completeness, and yields a computer program whose behavior can be considered a prediction, if

treated very carefully. We will look at sonic examples of these interactions in the context of knowl-

edge representations for reasoning about causal relations, specifically in medical problem-solving

systems.

Causal reasoning is a phenomenon that has attracted witch attention recently in both the

cognitive science community iGentner & Stevens, .i9831 and in the artificial intelligence/expert

systems community [de Kleer, 1977; de Kleer and Brown,- 1984; Forbus, 1984; Kuipers, 1984,

19851. Medical problem-solving systems such as MYCIN and Internist-I are fundamentally based

on weighted iLssociations between findings and hypotheses. In order to avoid a combinatorial
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explosion, such systems typically include assumptions about the in,lependence of these associations,

which leaves them unable to handle non-trivial ;.actions between diseases. Causal reasoning is

seen as a way to avoid some of the limitations of those systems by incorporating knowledge about

how the invOutnisms of the }wily work. A causal model of a disease process and its evolution

over time provides additional constraints that allow incompatible combinations of hypotheses to be

excluded, and may permit the combined effects of two diseases to be predicted.

In this paper we will trace a dialectic of sorts, in which different types of causal reasoning are

identified in verbatim protocols mid :Annulated by computer programs. The first type of causal

description consists of "causal links" holding between states of the; world. This type of causality

is the most commonly discussed in the scientific literature in psychology, philosophy, and artificial

intelligence. The second type of causal description is based on "qualitative simulation" of systems

of continuous parameters related by qualitative constraints. This is it qualitative abstraction of

differential equations as a description, of a physical system. The third type of description, the "one-

parameter simulation", is a hybrid of the first. two types. We have recently identified -xamples

of this third type of causal masoning in protocols, and arc now developing sp-Tifications for a

computer simulation.

These three types of causal descriptions arc not. alternative hypotheses, but apparently coexist

in the expert's mind. Open problems include how they relate with each other, and which problems

itre most. adequately handled by which type of knowledge. I present this discussion as an example

of au on-going investigation into causal reasoning combining the points of view of the cognitive

scient ist and the AI knowledge representation designer.
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2 . The Causal Link
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The most .1'0111I11021 representation for causal reasoning is the Causal Link representation which

consists of states linked by relationships labeled Causes or Caused-By. The states, strictly speak-

lug, are descriptions of aspects of the patient's overall condition. This type of representation is

useful as a completeness and coherency criterion on .explanations of the patient. state. Ideally, the

complete description should consist of a network of states which are either caused by other states

or are acceptable as primary causes. Similarly, causal links are useful for generating hypotheses by

specifying the possible causes of the states currently believed true.

A fragment. of a verbatim transcript illustrates reasoning using the causal link representation.

The subject has been presented with a few observations about the patient, and is attempting to

construct a coherent explanation for her condition. The underlined words arc the key phrases

corresponding to the subsequent analysis.

L014 A: Well, they say that there's,

L015 that's she's clearly dehydrated

L016 and with postural hypotension

L017 and so I'd be wondering the reasons why.

L018 She apparently hasn't been eating well,

L019 and, and I'd be concerned of whether

L020 she's had any g.i. losses,

L021 any vomiting,

L022 c.r any diarrhea,

LU23 or any other things

L024 to cause the significant volume depletion that she seems to have.
The conceptual content of this fragment can be analyzed naturally as references to a number

of stilt e- &script ions and causal equivalence Id specialization (-4) relations between

the states.
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dehydration = volume-depletion L0.15, L02.4

L015, L018volume-depletion = postural-hypotension

L018anorexia = volume-depletion

volume-depletion L020, L024gi-losses

gi-losses 4 vomiting, diarrhea, etc. L020 -L028

The intermediate states, like volume-depletion and gi-losses, provide organization for the set of

pessit,id, causes of observed findings.

2.1 AI Research on Causal Links

The classic program based on causal links among states is CASNET [Weiss, et al, 19781 which

diagnoses glaucoma at an expert level of performance. In CASNET, individual pathophysiological

states arc confirmed based on clinical findings of various kinds linked to them with a specified

strength of association. The states are connected to each other with causal links weighted according

to the frequency with which that particular causal pathway holds. A disease process corresponds

to a path through the (non-cyclic) network of states. The current state of the disease process in

a particular patient corresponds to partial progress along that path. The degree of belief in a

particular state combines the support of direct observations for that particular state with support

propagated from causally related states.

Rieger and Grinberg (1077) developed a taxonomy of different types of causal relations among

nodes representing states, events, actions, and tendencies. Their representation enabled them to

describe the behavior of mechanisms in terms of propagating activation of odes in the causal

network. The network could often be decomp'' sed into loosely coupled modu es, but was basically

"Ilat", in that there was no explicit separation cif different levels of description.

The ABEL system for acid-base and electrolyte diagnosis [l'atil, 10811 provides multiple lev-

els of state description, ranging from the clinical observation level down to a detailed description

of physiological processes. The different levels allow clinical observations such as vomiting and
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dehydration to be mapped to physiological assertions such as decreased sodium or increased potas-

sium concentrations in tlw blood. In ABEL, causal links are not weighted by frequency, but state

descriptions have quantitative components representing the amount of the effect produced by the

cause. This allows the system to reason about whether the observed causes are sufficient to account

for the magnitude of the observed problem, or whether an additional factor should be sought. The

ability to reason about the combination of reinforcing or compensating effects helps ABEL handle

ititeractions among diseases.

Pople (1982) also incorporates a network of causal relations along with the taxonomic relations

in his design for Ciulcuceus.

2.2 U-Tube Example

Suppose we have two tanks of water connected by a pipe at the bottom of each. This is often

described as a U-tube in elementary physics classes. The water hi both tanks is at the same level,

and there is no flow through the pipe.

If we suddenly add SUMP water to tank A, there is flow through the connecting pipe until the

system reaches a new equilibrium. A causal link description of this process would look something

like the following.
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I level(A) j pressure(A)

T AP

T floe,

level(A), j level(B)

pressurc(A), r pressure(B)

AP

flow

flow = 0

Medical texts are full of similar diagrams consisting of terms connected with causal links,

typically in a non-linear network. Our discussion is concerned with what formal repr.isentation

these can correspond to.

2.3 Critique

There are several problems with the causal link representation that limit its ability to express

relationships generally considered to be "causal!' or to make certain pragmatically important causal

inferences.

2.3.1 Semantics of the Causal Link

The causal chain presented above consists of terms of the form I X. Depending on the context

of the particular diagram, such a term can be used to mean a variety of different things:

X is increasing (i.e. has a po4;tive derivative),

the value of X is greater than normal,

t he value of X is greater than the previous value of X we considered,
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there is a tendency for X to increase which is combined with all other tendencies on X to

determine its actual direction of change.

Similarly, on examining the causal links in the system, we see that similar links, of the form

X Y, can be used to mean quite different things:

I f low ==> f low = 0 takes place over an interval in time,

I lcvcl(A) =fit pressure(A) takes place within the same instant in time.

The interpretation according to which causal relations take place aver a temporal interval is

certainly the most common, and is necessary to avoid contradiction in equilibrimn situations like

the above where I level(A) => j level(A). However, when compared with the physical

situation, some causal relations can be seen to impose an ordering on events or changes that are

physically constrained to take place simultaneously, as when I temperature pressure in a

container of gas.

Treating these "causal" relationships as identical means that events that are actually simulta-

neous are treated as though they were spread over time. (For example, char icters on the Saturday

morning cartoons frequently run off of cliffs, and yet have time for second thoughts before they start

falling.) This distortion may be characteristic of at least some human reasoning, as it resembles

the "Aristotelean physics" observed by McCloskey, et al (1980) in naive physics students. Thus, a

psychologist interested in the cognitiv-% development of causal reasoning might find such a collapse

of distinct relations descriptively useful.

However, expert systems designers find such reasoning methods pragmatically undesirable, since

they create intermediate state descriptions that are not physically realizable. It is Linos difficult to

validate the system's inferences or knowledge base against the scientific or technical literature in

the exinsrt domain.

The fact that the same terms are used to express importantly distinct types of assertions and

relationships suggests that this type of causal description is less useful for predicting the behavior

9
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of an unknown mechanism than for explanation of predictions derived in some other fashion.

2.3.2 Local vs Global States

Properly speaking, causal relations shou.'d hold only between global states of the world. How-

ever, as they are typically used in medical texts or causal-link-type problem-solving systems, they

hold bet wmil individual attributes. For example, in a model of the nephrotic syndrow we have

studied elsewhere [Kuipers and Kassirer, 19841, we saw the relation:

decreased serum protein increased interstitial fluid.

This illustrates the point of the previous section, since the Starling equilibrium meclumiszn requires

the patient to be simultaneously in the two states, decreased serum protein and increased interstitial

fluid. The stated relationship is only sometimes true, and can be blocked if decreased serum sodium

is also true. A physiological mechanism depends on a richly structured set of relationships among

the diffrirent attributes. In order for a causal description of a mechanism to be useful for predicting

future states, it must be able t' express that complex set of relationships

2.3.3 Predicting Behavior from Structure

In causal reasoning about physical mechanisms, a paradigmatic type of reasoning is predicting

the behavior of a mechanism from the behavior of its parts and the relationships between them.

Since the nodes of a causal network are states or events (i.e. fragments of potential behavior), there

is no representation for the structure of a mechanism as distinct from its behavior. The actual

behavior in response to a particular situation is some selection of nodes and links in the network.

While the combinations of states that are activated under a particular get of circumstances may be

novel, thew is no natural way to express the discovery of previously unsuspected states or behavior,

such as 11w existance of an equilibrium point between two landmark values.

10
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3 Qualitative Simulation

In search of a representation for causal reasoning that would be more adequate to explain the

ability of an expert to predict the behavior of a mechanism under unexpected circumstances, we

[ Kuipers stud Kassirer, 1081, 1984] examined transcripts of causal explanations. We found evidence

suggesting that she structure of a mechanism is represented separately from its behavior. This,

along with a new line of AI research, led us to focus on qualitative simulation as an alternative to

the causal link.

The qualitative simulation approach to causal reasoning separates the description of the struc-

ture of a mechanism from the description of its behavior. The structure of a mechanism is described

in terms of continuously-variable parameters and constraints among them. Behavior is described

in terms of the ordinal mlations among the values of paraineters and limiting landmark values, and

their directions of change. The semantics of this representation can he made precise by creating a

correspondence between the structural and behavioral descriptions and differential equations and

the functions that satisfy them (figure 1).

4P.The a lvant age of this approach to causal reasoning is that p -ndictions ot behavior can be made

from the structural description. It is capable of inferring unexpected types of behavior, can create

TIM landmark values where significant qualitative changes take place, and can handle feedback

phenomena.

The following protocol fragment (analysed more completely in Kuipers and Kassirer (1984))

illustrates the difference between time-independent facts about. the structural relationships between

values of two parameters (L162-178), and thne-dependent behavioral facts about the events at some

particular moment (L179-181).

11
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Physical Actual

System Behavior

Differential

Equation

Structural

numerical or analytic solution
: --0

qttalitative simulation
Description

V

Behavioral

Description

11

Figure 1: Qualitathe simulation and differential equations are both abstractions of actual behavior.
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L162 A: When there is a very low albumin in the serum,

L163 there are two forces which cause edsmia in my thinking

L164 the hydrostatic and oneotic forces

L165 and we have actually opposed forces,

L166 forces [...break...1 formation is secondary to

L167 the hydrostatic force of the Wood going through the capillaries

L168 and causing the transudation of fluid

L169 as well as the osmotic force within tlit . -od vessels,

L170 vnat is secondary to tim proteins ill the p:asma

L171 which tend to draw fluid

L172 troni the interstitial spaces into the blood vessels

1,173 and also there is the forces in the extracellular space.

L174 There are certain proteins which tend to-pull water

1,175 out of the blood vessels

L176 and there is a hydrostatic force I believe also in the interstitial spaces

1,177 which can counteract the force of the fluid

1,178 coining out from within the vessels

L179 and if you have a very low albumin in the serum,

L180 there will be a decreased osmotic pressure

L181 and make it easier for the fluid to go out into the interstitial spaces.

The analysis can be described as fohows.

12
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Descriptions of Structure

hydrostatic pressure(fluid, blood interstitial spaces) L167

flow(fluid, blood interstitial spaces) L168

concentration(protein, blood) LI70

serum protein oncotic pressure(fluid, interstitial spaces + blood) L169

flow(fluid, interstitial spaces blood) LI71-172

concentration(protein, interstitial spaces) L174

flow(fluid, blo d interstitial spaces) L174-175

hydrostatic pressure(fluid, interstitial spices blood) L176

flow(fluid, interstitial spaces blood) L177-178

Descriptions of Behavior

decreased conccntration(protein, blood) L179

=>, decreased serum protein oncotic pressure(fluid, interstitial spaces --+ blood) L180
Ans

increased flow(fluid, blood ---+ interstitial spaces) L181

The detailed analysis demonstrates that there is a distinction in the representation between

st rut ural and behavioral descr'ptions of a mechanism. The explanation focuses on the relationships

among and changes of continuous-valued parameters. And the values of those parameters are

described in qualitative terms. As a psychological, theory, :4* course, each of these conclusions is

quite tentative, and is subject to further experimental exploration and evaluation. Nonetheless,

t hey served as a valuable inspiration to a new and useful knowledge representation.
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3.1 Al Research on Qualitative Simulation

There has been a recent surge of interest in qualitative simulation in AI, with theories by de

Meer, Forbus, Kuipers, Williams and others reported in it recent special issue of the Artificial

Intelligence Journal (1984). The structure of a mechanism is described qualitatively in terms'W a

so of continuously varying (luantities, linked by constraints representing the structural relations of

the mechanism. Some constraints specify familiar mathematical relationships: D E RIV (vet, ace),

A I) (nct, oil. in), M I I LT (mass, ace, force), MINUS (hod, rev). Others assert. qualitatively that

here is a functional relationship between two physical parameters, but only specify that the re-

lationship is monotonically increasing or decreasing: M+ (price, power) and M (mph, mpg). The

value of a parameter at any point in time is describe qualitatively in terms of its ordinal relations

with a set of landmark values, and its direction of change. The behavior of the mechanism is

described as the sequence of qualitative states taken on by the parameters.

Differences among AI approaches to qualitative simulation include the hymn of the constraints,

how the constraint sets are created, what landmarks are known, whether landmarks are lilt arty

ordered, whether new landmarks can be created, and the algorithm used by the reasoning process.

In all cases, the qualitative simulation algorithm derives a set of possible behaviors from the

description of the structure of the mechanism. Ideally, the structural description will bc' well

enough selected so that simulation yields a single behavior which describes the actual behavior

of the 111(Thall18111, though at a more abstract level than a real-valued function. These techniques

perform well at predicting the behavior of equilibrium situations under a variety of perturbing

effects 11{nipers, 1984]. In more complex situations such as continuing or dissipating oscillation, it

is pos:-;ible for qualitative simulation to predict impossible behaviors Ilinipers 1985].

In tlw context of a diagnostic problem-solver it seems that the role of such a qualitative simu-

lation iS to generate the possible consequences of a hypothesized primary disease. The diagnostic

system can then test whether the observed facts correspond to some possible scenario for the dis-

ease. The mechanism description both generates predictions to be tested, and elaborates a more
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Evoker Evoker

Hypotheses Observations

i

I

I

I QS1M QSIM QS IM-
1 " structure predictions facts

If J
\ match.

Difference

description

Figure 2: The Interaction between QSIM and the Evoker

detailed description of the patient state than would be possible otherwise. We are currently in the

midst of creating a diagnostic program called RENAL which operates in this fashion (see figure 2),

based on the interaction between a frame-based diagnostic program (the Evoker) and a qualitative

simulation program (QHM).

3.2 U-Tube Example

In our example of the U -tube, the structural description is stated in terms of continuous pa-

rameters for the level, Qressure, pressure-difference, and flow across the pipe. (Figure 3)

The behavioral description is constructed by finding sets of qualitative transitions for the pa-

rameters in the structure, consistent with the constraints. Figure 4 shows the qualitative behavior

as a sequence of qualitative states for each parameter. A qualitative state is a pair consisting of a

magnitude and a direction of change (increasing, decreasing, or steady). A magnitude is either

a landmark value (e.g. PA* is the initial value of pressure(A)) or an open interval bounded by
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Figure 3: Structural Description of the U-Tube

landmark values (e.g. (PA*, co)). In this case, there is only one consistent behavior, so we know

that it represents the actual behavior of the system [Kuipers 1085].

We can also describe the behavior as a set of qualitative graphs of the individual parameters,

where only the ordinal relationships between the values on the axes and the points plotted are
significant. (Figure 5)

3.3 Critique

Qualitative simulation predicts the behavior of a system correctly and uniquely when given a

properly structured first-order description of the system (i.e. the corresponding differential equation

includes only first derivatives). Modest branching takes place corresponding to genuine alternative

behaviors consistent with the given structure and initial state. Most second-order systems and

poorly constructed first-order systems yield widely branching behaviors that contain too many

alternatives to be useful. This could be evidence that qualitative simulation is too complex to be
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I evel (A) ((X A* , oo),dec) P7 + ((X A*, oo), dec) /0 4 (X Al, std)

level ( B) (X D*,inc) P5 + ((X11 *, oo), inc) 18 (X 131, std)

pr:s sure(A) ((PA *, oo), dec) P7 + ((PA * , oo), dec) /0 (P Al;atd)

pressure(B) (P13 *, inc) P5 ((P13 *, oo), inc) 18 (P131, std)

AP ((0, oo), dec.) P7 ((0, oo), dec) 15 + (0, std)

flow ((0, oo), dec) P7 ((0, oo), dec) 15 + (0, std)

Figure 4: Behavior of the U-Tube: Parameter Transitions

Ka

. 4
...... -IP

IMMIX
be

Pet

Peo

Figure 5: Behavior of the U -Tube: Qualitative Graphs

cs. 18
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a realistic model of human (Initial reasoning. On the other hand, it is consistent with the plausible

hypothesis that people can only use qualitative simulation on first-order models of mechanisms,

and even then, only when their model of the structure has been debugged through training and

experience.

Evidence from verbatim protocols suggested certain features of the knowledge representation

that led to the development of qualitative simulation algorithms. TIowever, the protocols do not

contain clear references to all of the stages of those algorithms. There are several possible expla-

nat ions, which require further empirical work to be distinguished.

Only the initial propagation of information to create a complete initial state description

is accessible to verbal explanation; the actual simulation takes place "automatically" and
unconsciously.

Propagation of the initial gate description, simulation of subsequent states, and the de-

scription Of the final state are all accessible to verbal explanation, but these very different

compiltational processes are verbalized with similar constructions, making the correspondence

difficult to determine.

Qualitative simulation is only done at "learning time", and a generic behavior is retrieNA to

fit part icular problems. An explanation selects which features of the stored information to

verbalize, but has no correspondence to a trace of the computation.

Quantal ive simulation is a mathematical construct with a general resemblance to human

causal reasoning, but does not, in fact,correspond to any cognitive process.

hi the next section, I explore an alternative type of causal reasoning that combines some of the

desirable features of the causal link model and the qualitative simulation model.
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4 One-Parameter Simulation
10

19

Qualitative reasoning systems have generally been oriented toward complete descriptions of

complex systems with subtle behavior. In such cases, a complex qualitative simulation algorithm is

necessary in order toferive adequate results from the given problem statement,. However, protocol

analysis often reveals a simpler usage, focusing on the behavior of a single parameter as it moves

to and past various landmark values.

Although the mechanism being simulated consists of a single parameter, and is thus much

simpler than in the qualitative simulation case, the inference prixess may still involve sophisticated

reasoning metho,ls. In the fragment below, there ,are implicit references to a "health status"

parameter that can be either stable or deteriorating, and to an unspecified future event, presumably

when the patient. reaches a point of no return, before which action is required.

L043 When I'm told that there is no improvement,

L044 and... when someone remains stable for forty eight hours,

L045 I think you're in a position

L046 where you can buy a little bit more time.

L047 If there's deterioration,

L048 which I'm not told,

L049 then I'd feel a lit tie more strongly about. moving ahead.

In order to capture the content of this fragment, the causal reasoner must be able to express

alternate hypothetical worlds, the qualitative magnitude and direction of change of continuous

parameters, tlit. magnitudes of time-intervals as well as physical parameters, and the comparison

of iii tgnitudes across hypotheses.

20
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Actual(Notiq. L04

Ilealth Status(Patient,Now) = (poor, stable) L0484,044

Ilypothetical(NotvE) L048

Ilealtk-Status(Patient,Now2) = (poor, deteriorating) L047

Event = last opportunity for treatment implicit

Time-Interval(Now2,Event) < Tinte-Interval(Now,Event) L045-L046, 1,049
This comparison between two hypothetical situations for a single patient is generalized and

abstracted to a monotonic relationship between health status and urgency of treatment. In the

following fragment from the same protocol, this consideration is tied to :,he selection of an invasive

test.

L070 What I use to decide which to go tJ is really ...

L071 partly, how sick the patient is.

L072 'Cause I actually think

L073 the sicker a patient is the more rapidly the

L074 (the) more likely. I am

L075 to go to an open lung biopsy.

M (llealth-Status(Patient,Now), Time-Interval(Now,Event)) £072-1078

M ( Time- Interval ( Now, Event), Preferen ce( Open-Lung- Biopsy, Bronchoscopth L074 - L075

In the one-parameter simulation, rather than using a network of constraints on a set of simul-

taneously ci anging parameters to determine which of many possible combinations of behaviors are

consistent, simulation projects the possible futures of a single driving parameter. The remaining

features of the current state description can then be inferred, if needed, from the qualitative value

of the driving parameter. Prediction of the next state is done by mov:ng the driving parameter

in its direction of change and checking for the consistency of the resulting state. As we see in the

above protocol fragment, a particularly useful application of this reasoning method might be to

perform the same simulation in slightly varying contexts to determine an abstract relationship.
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level(A) = level (I3) pressure(A) = pressure(131

AP

flow =0

steady(AP)

11-

level(A) > level(B) pres.4ure(A) > pressure(D)

> 0

flow >0

decreasing (AP)

11-

AP= 0 -P flow =0
pressure(A) = pressure(B)

level(A) = level(13)

steady(AP)

.Figure 6: One-Parameter Simulation of the U-Tube

4.1 U-Tube Example

T level(A)

AP 0

hi the one-parameter simulation, the U-tube has the same structural description as for quali-

tative Finiu la t ion (figure 3), but the structure is used only for propagation to fill out the current

state description. Prediction of the next state is done by focusing on a single parameter, changing

it a3 (:esired, and propagating to fill out the state.

hi Figure 6, the top box is the initial state description, derived from the assumption that

level(A) = level(B). The first cau;:al link (4) corresponds to adding water to tank A, 'o that
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level(A) is increased; the remaining aspects of the state description follow by propagation. The

second link responds to the selection of AP as driving parameter, moving to the limiting value

0. Other select ions of driving parameter would have produced the same result.

Since the prediction phase focuses On a single parameter and does not. wetch the simultaneous

evolution of all parameters, it does not conclude whether level(A) in the final state is greater or less

than /eve/(A) in the initial state. This demonstrates a trade-off between the amount of information

deduced, and the robustness and coniput. Tonal cost of the algorithm.

4.2 Critique

The one-parai,ieter simulation is not as powerful as the full qualitative simulation, since it

do( s not, capture interactions among parameters. It is not straight-forward for the one-parameter

simulation to conclude, for example, that a new equilibrium point exists between two landmark

values previously believed to be adjacent.

However, because it focuses attention on a single changing parameter, it is computationally

simpler. Furthermore, based on preliminary study, it does correspond well with parts of the ver-

batim protocol that have not matched the qualitative simulation algorithm. It also appears to

match certain less formal observations of physicians' behavior and explanations collected by Harry

Pople [personal communication, 1083] in a review of open problems inspired by his research on the

Int ernist/Cadeuceus system.

Both the computational and the empirical implications of the one-parameter simulation require

considerable further study. Based on the examples we have collected that suggest the existence

and properties of one-parameter simulation, a more systematic analysis of protocols is needed to

establish those properties more clearly. We have also designed and are beginning to implement a

working version of the one-parameter simulation.
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5 Discussion

These examples illustrate three distinct types of causal reasoning and explanation that can

1w identified in verbatim transcripts. The underlying conceptual frameworks for the causal link

representation and the qualitative simulation representation are almost completely distinct. The

third type, however, suggests that,they represent the poles of a spectrum of representations, across

which the advantages and disadvantages of the two approaches are combined in various propor-

tions. Thus, when we look at human behavior and hope to determine the reasoning technique in

a certain area, We are likely to find, as in these examples, that a variety of techniques are used

opportunistically.

The methods we have used for collection and analysis of verbal protocols are much more thor-

oughly discussed elsewhere [Ericsson and Simon, 1980; Kassirer, Kuipers, and Gorry, 1982; Kuipers

and Kawsirer, 1084]. The examples used here are from "thinking aloud" interviews where physi-

cians presented with cases in small packets, and encouraged in non-directive ways to think

aloud while analyzing the case. A fragment of protocol is likely to provide better insights into the

problem-solving frocess if it represents a point where the subject is clearly in the midst of solving

the prehwm. A summarized conclusion is often in such a conventional form as to hide any traces of

the actual problem-solving process. Although we interview physicians at several levels of expertise,

we have generally found it. more fruitful to study those at a "journeyman" level of expertise (e.g.

second or third-year residents), than the "masters" who can leap directly from the problem to a

correct answer.

The analysis takes place in two stages. Firsit, we find a underlying domain of conceptual objects

correspoi,iing to all of the referring phrases found in a protocol fragment.. Second, we attempt

to devise a knowledge representation and inference process corresponding to the nature and order

of the assertions we see in the fragment. Both the referring phrase analysis and the assertional

analysis are "analysis by synthesis" processes drawing heavily on the analyst's familiarity with a
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range of knowledge representations and formal inference strategies. Therefore, although this type

of analysi, very fruitful in suggesting knowledge-representation structures and their properties,

it. is dependent both on the state of theoretical work on kulwledge rwresentations and on the

individual analyst.

Although care can be taken to avoid HU Illy known methodological pitfalls, at the current state

of the cognitive sciences, there is tilways the problem of the observer being unable to recognize

a phenomenon which is not expressible in his or her conceptual vocabulary. The benefit to the

cognitive scientist of familiarity with knowledge representation research lu artificial intelligence is

just that: it provides a larger vocabulary of concepts with which to look at the cognitive world.

I offer these observations as a designer of knowledge representations with a reading knowledge

of cognitive psychology, feeling that we AI researchers can use direction from psychologists about

the actual nature of the knowledge we are trying to express, and that psychologists can benefit

from familiarity with the range of representational tools we have available.
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